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Department of Applied Mathematics, The University, Hull, England, HU6 7RX 
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Abstract. Expressions based on a recently proposed approximate density of states function 
are derived for thermodynamic functions of an ideal relativistic Bose gas in d dimensions. 
The results obtained are compared with those found using the exact density of states and 
agreement is found to be good in the three-dimensional case but less good in higher 
dimensions. It is noted that, in the extreme relativistic and non-relativistic limits, results 
agree exactly and, in the vicinity of the state of zero kinetic energy, the two densities of states 
exhibit similar behaviour. Mention is made also of the application of this approximate 
density of states function to a consideration of the ideal relativistic Fermi gas. 

1. Introduction 

Recently, interest has revived in the study of the ideal relativistic Bose gas, with 
particular attention being paid to the phenomenon of Bose condensation (Beckmann er 
a1 1979, Aragio de Carvalho and Goulart Rosa 1980a, b). Much of this renewed 
interest stems from a discussion of the cosmological implications of a massive primor- 
dial photon gas by Kuzmin and Shaposhnikov (1979) and from problems associated 
with quarks and quark confinement. (For a review of statistical mechanics at high 
energy density see Sertorio (1979).) 

Subsequently, a review of the ideal relativistic Bose condensation, together with a 
discussion of some related matters, has been presented by Landsberg (1980). In this 
review, the normal theory is generalised to arbitrary discrete spectra before specialising 
to a specific density of states function. A discussion of the ideal relativistic Bose gas in d 
dimensions follows, and it is shown that the condensation phenomenon becomes more 
pronounced both as the extreme relativistic limit is approached and when higher 
dimensions are considered. It is found that, for particles of small rest mass mo, there is 
no condensation for d = 2 unless mo = 0. Also, no discontinuity is found in the constant 
volume heat capacity at the condensation temperature when d = 3 or 4, again unless 
mo = 0. It is in this review also that the approximate density of states function, to be 
discussed here, is proposed. 

In the articles by Beckmann et a1 and by Aragiio de Carvalho and Goulart Rosa, 
evaluation of the integrals involved in any discussion of ideal relativistic Bose conden- 
sation is achieved through recourse to an expansion of the distribution function, with 
use of the integral representation for the modified Bessel functions of the second kind. 
The important point to emerge from these discussions is that there is a qualitative 
difference between massive and massless Bose gases at the condensation temperature, a 
point made already in Landsberg and Dunning-Davies (1965a). It should be noted that 
the extreme relativistic approximate expression for the mean total number of particles 
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given in this latter paper (correctly criticised by Araglo de Carvalho and Goulart Rosa 
(1980b)) does not affect any other part of that paper, since the exact result was used in 
plotting the graph of the condensation temperature against rest mass for various 
concentrations. 

There are several exact treatments of the relativistic gases available (Bauer et a1 
1974, Nieto 1969, Elze et a1 1980) and, for the non-degenerate case, an approximate 
formulation was suggested and discussed by Honl (1971). In the present paper, the 
thermodynamic functions for an ideal relativistic Bose gas in d dimensions are derived 
in terms of the approximate density of states alluded to above. The results are 
compared with those obtained using the exact density of states, and the approximation 
is found to be surprisingly good, particularly in the three-dimensional case. Also, it is 
noted that in the vicinity of the state of zero kinetic energy, the approximate and exact 
densities of state exhibit similar behaviour. In the final section, mention is made of the 
application of this approximate density of states function to a consideration of the ideal 
relativistic Fermi gas. 

2. The Landsberg (Bose) gas 

Expressions for the thermodynamic properties of the ideal relativistic quantum gases 
are well known. However, although much information is obtainable from them, the 
integrals appearing in these expressions do not admit analytic solution. As an alter- 
native to the approximations usually considered, it is proposed to evaluate exactly the 
properties of an ideal relativistic Bose gas in d dimensions based on the approximate 
density of states (see Landsberg 1980), 

2 vd being the d-dimensional volume, q k T  = e, u k T  = eo = mc , the rest energy, and w 
the degeneracy factor. 

This system will be called the Landsberg gas. As is immediately obvious, this 
approximate density of states interpolates between the extreme relativistic and non- 
relativistic cases and has the correct limiting behaviour as the rest energy, eo, tends to 
zero and to infinity. 

The thermodynamic properties of a Bose gas of interest in the present investigation 
are given in table 1 for both exact and approximate densities of states, the integrals 
I ( a ,  s, i) and @(a, s, *) being defined by 

and 

B(a,s, * ) = T ( d + ~ - l ) I ( c ~ , d + s - 3 ,  * ) + ; ( 2 ~ ) ~ ' ~ r ( $ d + ~ - l ) I ( c ~ , ; d + ~ - 3 ,  *). 

In the special case of three dimensions, equation (2.3b) may be rearranged to give 
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Hence, T, may be found for various values of U ,  and the concentration n = N /  V. This 
was the procedure adopted in a previous article (Landsberg and Dunning-Davies 
1965a) where the exact expression shown in ( 2 . 3 ~ )  was evaluated numerically for the 
case d = 3. These numerically evaluated results, together with the corresponding ones 
obtained from (2.6),  are shown in table 2. They are seen to be in good agreement, the 
maximum deviation being 9% near U, = 1. 

Table 2. Corresponding values of the critical temperature, T,, obtained via the approximate 
density of states and numerically via the exact density of states ( n  is the concentration). 

io5 
1 o4 
io3 
1 o2 
10 

5 
1 
0.5 
0.2 
0.1 
0.05 
0.01 
0.001 

0.00132 
0.00417 
0.0132 
0.0417 
0.131 
0.183 
0.347 
0.406 
0.449 
0.456 
0.460 
0.462 
0.462 

0.00132 
0.00417 
0.0132 
0.0416 
0.128 
0.175 
0.318 
0.374 
0.432 
0.441 
0.452 
0.460 
0.462 

From (2.46) and (2.36),  the expression for UlN, evaluated at the critical tempera- 
ture T,, is seen to be 

where B = [ N T ( d / 2 ) h d ~ d / 2 ~ d ’ 2 V d ] 1 / d .  
This factor B is seen to appear in the expression for U/N, evaluated at T,, which is 

obtained from ( 2 . 4 ~ )  and ( 2 . 3 ~ ) .  Hence, in figure 1, U/NB is plotted against U ,  for 
various values of the number of dimensions d for both exact and approximate densities 
of states. As is seen, there is good agreement in the case of three dimensions, but this 
agreement becomes progressively worse as the number of dimensions is increased. 

The discontinuity in the constant volume heat capacity at T = T, is given by 

A (CO 1 T,- - (CO) T~+. 

Expressions for this in terms of both exact and approximate densities of states are given 
by ( 2 . 5 ~ )  and (2.56) respectively. These equations, together with ( 2 . 3 ~ )  and (2.36), 
have been used to plot the function AINK against the number of dimensions d for 
various values of U, and for both exact and approximate densities of states. The 
resulting curves are shown in figure 2. Obviously, both expressions lead to the same 
curves in the extreme relativistic (U, = 0) and non-relativistic (U, = 00) cases. In the 
intervening region, results obtained by the two routes are seen to agree well except 
when U ,  lies between the values 1 and 10. It might be noted also that, due to the form of 
the approximate density of states (2.  l), the expression for any thermodynamic function 
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Figure 1. The ratio U/NB (as defined in (2.7)) evaluated at the condensation temperature 
T, is plotted against U, (= eo/kTc)  for various numbers of dimensions d and for both exact 
(full curves) and approximate (broken curves) densities of states. 
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Figure 2. The discontinuity in the constant volume heat capacity per particle at the 
condensation temperature T, is plotted against the number of dimensions d for various 
values of U, ( =  eo/kT,) and for both exact (full curves) and approximate (broken curves) 
densities of states. 

evaluated in either the extreme relativistic or non-relativistic limits will agree with the 
results derived using the exact density of states. 

Again, by examining (2.3b) and (2.5b),  it is seen that 
(i) for d = 1, there is no condensation; 
(ii) for d = 2, there is condensation only for mo = 0 but A = 0; 
(iii) for d = 3, 4, there is condensation for mo= 0 with A>O,  and for mo>O with 

(iv) for d 3 5 ,  there is condensation for mo 5 0 with A > 0. 
A = O ;  

This is in complete agreement with conclusions drawn using the exact results ( 2 . 3 ~ )  and 
( 2 . 5 ~ )  (Landsberg 1980). 

Recently it has been pointed out (Aragfo de Carvalho and Goulart Rosa 1980b) 
that many of the problems in earlier work may be attributed to approximations being 



3010 J Dunning-Davies 

made to the density of states. As far as Bose condensation is concerned, they claim that 
it, together with the low-temperature behaviour of the system, are determined by the 
density of states in the neighbourhood of the state of zero kinetic energy, q = 0. The 
approximate density of states discussed here behaves in a similar manner to the exact 
density of states in the neighbourhood of 77 = 0. As is pointed out by AragZo de 
Carvalho and Goulart Rosa (1980b), the exact density of states is a concave function 
below q = 0.2247u, being zero and having an infinite derivative at q = 0. The approx- 
imate density of states is a concave function below q = 0.3 15u, being zero and having an 
infinite derivative at q = 0. 

Hence, when considering an ideal relativistic Bose gas, it is found that results 
obtained via use of the approximate density of states (2.1), originally proposed by 
Landsberg (1980), are in excellent agreement in the physically realistic case of a 
three-dimensional gas. However, as the number of dimensions is increased, the 
agreement becomes progressively worse. Also, it should be noted that what makes this 
approximation reasonable is the fact that it preserves the essential qualitative features 
of the system. It simplifies the extreme relativistic and non-relativistic limits and, 
although not good in the intermediate region, except in the three-dimensional case, it 
does not alter the main characteristics of the condensation phenomenon. It would 
seem, therefore, that this approximate density of states could prove useful in determin- 
ing the behaviour of thermodynamic functions associated with an ideal relativistic Bose 
gas when numerical evaluation of the exact expressions is not deemed worthwhile. This 
approximate formulation would have an advantage over the approximation 
suggested by Honl (1971) in that it would not be restricted to the non-degenerate case. 
Recently, Landsberg and Park (1975) used the Honl equation of state for a relativistic 
quantum gas in their discussion of an oscillating universe. The present approximation 
could have been used equally well and might be employed in future examinations of this 
problem. 

The Landsberg gas might prove useful also in investigations of the properties of 
hadronic matter at high densities. This is due to the fact that the mass spectrum of 
hadrons, p ( m )  dm, is taken to have the asymptotic form cma ebm dm (Hagedorn 1965) 
and, in order to derive expressions for the various thermodynamic functions, it is 
necessary to integrate expressions such as ( 2 . 2 ~ )  for the mean total number of particles 
and (2.40) for the internal energy over m. The use of the approximate density of states 
in calculations such as these would obviate the need to introduce modified Bessel 
functions of the second kind and the subsequent use of the asymptotic expansion of such 
functions. 

3. The Landsberg (Fermi) gas 

While the background to the introduction of the approximate density of states function 
(2.1) is concerned solely with the ideal relativistic Bose gas, (2.1) may be used also in a 
consideration of the properties of an ideal relativistic Fermi gas. 

For such a system, the mean number of particles is given by 

N = A d [ r ( d ) l ( a ,  d - 1, +) + $ ( 2 ~ 4 ) ~ ’ ~ r ( h i ) I ( c r ,  i d  - 1, +)] 

and the internal energy, excluding the rest energy, is 

(3.1) 
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It follows that the constant volume heat capacity is given by 

(3 .2)  

If the Sommerfeld lemma is applied to the integrals appearing in (3.2),  it is found that 
for a degenerate relativistic Fermi gas in three dimensions 

c u  = c u , m  + G , e r  ( 3 . 3 ~ )  

where C,,,, and C,,,, are the constant volume heat capacities of a degenerate non- 
relativistic Fermi gas and a degenerate extreme relativistic Fermi gas respectively. 

The corresponding result derived using the exact density of states is 

G = [ ( ~ o , n r ) ’ +  ( ~ u , e r ) ’ I ~ ’ ~  (3.3b) 

(Landsberg and Dunning-Davies 1965b). 

lead to 
It might be noted also that for a degenerate electron gas, formulae ( 3 . 3 ~ )  and (3.3b) 

C, /Nk = 1.6 x 10-”T 

where a particle density of has been assumed and (3.1) has been used. 
For a non-degenerate Fermi gas, (3 .2)  and (3.1) lead to 

_- C, ;+ 15(2.rr)-”2(kT/mc2)3’’. . . , non-relativistic case, 
N k  - ( 3  + 1 6 ( 2 ~ ) ” ~ ( m ~ ~ / k T ) ~ ’ ~ .  . . ,  extreme relativistic case. 

If the exact density of states is used, the corresponding expressions are 

C, $+?(kT/mc’).  . . , non-relativistic case, 
N k  - {3 - - i (mc’ / kT) ’ ,  . . , 
-- 

extreme relativistic case, 

(Landsberg and Dunning-Davies 1965b). As is immediately obvious, the second terms 
obtained using the approximate density of states agree with those obtained via the exact 
density of states neither as far as the coefficients nor the dependence on ( m c 2 / k T )  are 
concerned. Considering the form of the approximate density of states (2.1),  this is not a 
surprising result. However, using (2.1) as the starting point for a discussion of the 
properties of an ideal relativistic Fermi gas has the merit that all the integrals appearing 
tire of the form 

and these are well tabulated (Dingle 1958). 
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